

MEOSAR Overview

SAR Controllers Training 2014 24 – 28 March 2014

> Chris O'Connors NOAA

Agenda

- MEOSAR/DASS Overview
- Space Segment
- Ground Segment
- DASS POC
- MEOSAR Timeline
- Demonstration and Evaluation

MEOSAR/DASS Overview

MEOSAR/DASS Overview

MEOSAR/DASS Concept

- Utilize multiple satellites with SAR repeaters, or "bent pipe"
- Multiple antennas are used to receive the same beacon burst
- The time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is then used to determine location
- One burst, received through 3 unique satellites, is capable of producing a location
- Essentially, GPS location in reverse

3/5/2014 4

MEOSAR/DASS Overview

Medium Earth Orbit (MEO) SAR / Distress Alerting Satellite System (DASS)

- Various studies determined that medium-earth orbiting (MEO) satellites provide a vastly improved space-based distress alerting and locating system.
- NASA, with USAF Space and Air Combat Command, NOAA, and USCG are developing a capability on GPS satellites— Distress Alerting Satellite System (DASS)

MEOSAR provides

- A combination of the best assets of GEOSAR and LEOSAR
- Near instantaneous notification and location of distress
- Near 100% Availability
- Better location accuracy
- Global coverage
- Full compatibility with current and future beacons

3/5/2014 5

MEO vs. LEO Coverage

US MEOSAR Ground Segment Design

Ground Segment

- Prototype ground station at NASA Goddard Space Flight Center
 - 4 antennas capable of independently tracking 4 satellites
 - Completed in 2008
 - Successfully passed acceptance testing
 - May become future operational MEOLUT
 - Full participation in MEOSARD&E testing

Ground Segment

- Accepted MEOLUT Wahiawa, Hawaii
 - 6 antenna capable of tracking 6 satellites either S-band or L-band
 - Constructed in September 2011 and passed acceptance testing

Ground Segment

- Proposed MEOLUT in Miami, Florida
 - 6 antenna capable of tracking 6 satellites either S-band or L-band
 - CDR completed November 2013
 - Construction and site acceptance tests will be completed by March 1st 2014

DASS Proof-of-Concept

- DASS Proof-of-Concept (POC) Space Segment
 - Thirteen current on-orbit GPS Block IIR and IIF satellites carry DASS repeaters
 - POC system uses existing GPS. Downlink at S-Band (Not ITU-allocated for SAR, but may possibly be used operationally)
- Proof-of-Concept results to date:
 - Demonstrated ability to locate beacons to greater than current Cospas-Sarsat accuracy using two or more satellites
 - System meets/exceeds theoretical capabilities
 - Tests are on-going

Space Segment

- Repeaters will be flown on Medium Earth Orbit satellites (MEOSATs)
- Will utilize 3 Global Navigation Satellite System (GNSS) constellations
 - GPS (USA)
 - GLONASS (Russia)
 - Galileo (ESA)
- Current plan is to have 24
 US MEOSAR instruments
- 72 MEOSAR instruments total

Search and Rescue on GPS (SAR/GPS)

- NASA, with USAF Space and Air Combat Command, NOAA, and USCG are developing a capability on GPS satellites— SAR/GPS
- SAR/GPS provides:
 - 406 MHz "bent-pipe" repeaters on GPS Alert data downlink freely available internationally in L-band
 - Full compatibility with existing and future 406 MHz beacons
 - Support for civilian and military SAR responsibilities
 - Low technical risk, low cost
 - SAR/GPS fully interoperable with similar proposed Russian (SAR/GLONASS) and European (SAR/Galileo) systems
- Supports U.S. Policy on Space-Based Positioning, Navigation & Timing Policy – S&R on GPS

MEOSAR Transition

2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Second Generation Beacons									
MEOSAR Ground System Development									
1	MESOAR	D&E	F	re-IO	c	IOC		FO	C
						Galile	O		
	GLONASS								
									SAR/GPS
				DASS					SAR/GP3

US MEOSAR Timeline

- 2011 planning for MEOSAR D&E testing;
- 2012 participant ground segment preparation for D&E testing;
- 2013 Phase I MEOSAR D&E technical testing;
- 2014 Phase II MEOSAR D&E operational and technical testing;
- 2015 Phase III MEOSAR D&E L-band operational and technical testing; and
- 2015 compilation of test results and analysis, and preparation of final D&E report.

MEOSAR Demonstration and Evaluation (D&E)

Goals

- Characterize technical and operational performance
- Evaluate operational effectiveness
- Provide basis for recommendations on the integration of MEOSAR system into C/S

Basis for commissioning criteria

MEOSAR Demonstration and Evaluation (D&E)

Technical tests

- Processing threshold and system margin
- Impact of interference
- Valid and complete message acquisition
- Location accuracy
- System Capacity
- Networked MEOLUT advantage
- Combined MEO/GEO performance

MEOSAR Demonstration and Evaluation (D&E)

- Operational Tests
 - Time advantage
 - Unique detections
 - Volume of ground segment traffic
 - SAR/Galileo RLS
 - Direct and indirect benefits of MEOSAR system
 - Validate Data distribution procedures
 - Validate quality factor(s) for location

C/S R.018 – Section C.1.3.14 (2 of 2)

Performance Parameter	Requirement	Definition	Reference in LEOLUT Performance Specification C/S T.002
Detection Probability	99%	The probability of detecting the transmission of a 406 MHz beacon and recovering at the MEOLUT a valid beacon message, within 10 minutes from the first beacon message transmission.	Paragraph 5.3.2
Independent Location Probability	98%	The probability of obtaining at the MEOLUT a 2D location (Lat/Long), independently of any encoded position data in the 406 MHz beacon message, within 10 minutes from the first beacon message transmission.	Paragraph 5.3.3
Independent Location Error	P(e < 5 km) > 95%	The system independent location solution should be within 5 km from the actual beacon position 95% of the time.	Paragraph 5.3.6
Single Burst Independent Location Probability	90%	The probability of obtaining at the MEOLUT a 2D location (Lat/Long), independently of any encoded position data in the 406 MHz beacon message, using a single burst transmission.	
Single Burst Independent Location Error	P(e < 5 km) > 90%	The Single Burst independent location solution should be within 5 km from the actual beacon position 90% of the time.	
Sensitivity	≤34.8 dB-Hz	The minimum C/No level at which the MEOLUT will correctly process beacon messages, where C/No is the ratio of the unmodulated carrier power to noise power density in dB-Hz. The value is that necessary to obtain a 5x10 ⁻⁵ BER for the beacon message.	Paragraph 5.3.1

Table C.1: MEOLUT Minimum Performance Requirements

Introduction

AOI for Location – All WDDR MCCs

Percentage of Day with 3+ Satellites: Throughput 70% and 12 Satellites

Percentage of Day with 3+ Satellites: Throughput 85% and 12 Satellites

Percentage of Day with 3+ Satellites: Throughput 100% and 12 Satellites

Percentage of Day with 3+ Satellites: Throughput 70% and 18 Satellites

Percentage of Day with 3+ Satellites: Throughput 85% and 18 Satellites

Percentage of Day with 3+ Satellites: Throughput 100% and 18 Satellites

Percentage of Day with 3+ Satellites: Throughput 70% and 30 Satellites

Percentage of Day with 3+ Satellites: Throughput 85% and 30 Satellites

